Identify the range of the function shown in the graph.

Video transcript

The function f of x is graphed. What is its domain? So the way it's graphed right over here, we could assume that this is the entire function definition for f of x. So for example, if we say, well, what does f of x equal when x is equal to negative 9? Well, we go up here. We don't see it's graphed here. It's not defined for x equals negative 9 or x equals negative 8 and 1/2 or x equals negative 8. It's not defined for any of these values. It only starts getting defined at x equals negative 6. At x equals negative 6, f of x is equal to 5. And then it keeps getting defined. f of x is defined for x all the way from x equals negative 6 all the way to x equals 7. When x equals 7, f of x is equal to 5. You can take any x value between negative 6, including negative 6, and positive 7, including positive 7, and you just have to see-- you just have to move up above that number, wherever you are, to find out what the value of the function is at that point. So the domain of this function definition? Well, f of x is defined for any x that is greater than or equal to negative 6. Or we could say negative 6 is less than or equal to x, which is less than or equal to 7. If x satisfies this condition right over here, the function is defined. So that's its domain. So let's check our answer. Let's do a few more of these. The function f of x is graphed. What is its domain? Well, exact similar argument. This function is not defined for x is negative 9, negative 8, all the way down or all the way up I should say to negative 1. At negative 1, it starts getting defined. f of negative 1 is negative 5. So it's defined for negative 1 is less than or equal to x. And it's defined all the way up to x equals 7, including x equals 7. So this right over here, negative 1 is less than or equal to x is less than or equal to 7, the function is defined for any x that satisfies this double inequality right over here. Let's do a few more. The function f of x is graphed. What is its range? So now, we're not thinking about the x's for which this function is defined. We're thinking about the set of y values. Where do all of the y values fall into? Well, let's see. The lowest possible y value or the lowest possible value of f of x that we get here looks like it's 0. The function never goes below 0. So f of x-- so 0 is less than or equal to f of x. It does equal 0 right over here. f of negative 4 is 0. And then the highest y value or the highest value that f of x obtains in this function definition is 8. f of 7 is 8. It never gets above 8, but it does equal 8 right over here when x is equal to 7. So 0 is less than f of x, which is less than or equal to 8. So that's its range. Let's do a few more. This is kind of fun. The function f of x is graphed. What is its domain? So once again, this function is defined for negative 2. Negative 2 is less than or equal to x, which is less than or equal to 5. If you give me an x anywhere in between negative 2 and 5, I can look at this graph to see where the function is defined. f of negative 2 is negative 4. f of negative 1 is negative 3. So on and so forth, and I can even pick the values in between these integers. So negative 2 is less than or equal to x, which is less than or equal to 5.

Learning Outcomes

  • Find domain and range from a graph, and an equation.
  • Give the domain and range of the toolkit functions.

Identify the range of the function shown in the graph.

Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the [latex]x[/latex]-axis. The range is the set of possible output values, which are shown on the [latex]y[/latex]-axis. Keep in mind that if the graph continues beyond the portion of the graph we can see, the domain and range may be greater than the visible values.

Identify the range of the function shown in the graph.

We can observe that the graph extends horizontally from [latex]-5[/latex] to the right without bound, so the domain is [latex]\left[-5,\infty \right)[/latex]. The vertical extent of the graph is all range values [latex]5[/latex] and below, so the range is [latex]\left(\mathrm{-\infty },5\right][/latex]. Note that the domain and range are always written from smaller to larger values, or from left to right for domain, and from the bottom of the graph to the top of the graph for range.

Example: Finding Domain and Range from a Graph

Find the domain and range of the function [latex]f[/latex].

Identify the range of the function shown in the graph.

Example: Finding Domain and Range from a Graph of Oil Production

Find the domain and range of the function [latex]f[/latex].

Try It

Given the graph, identify the domain and range using interval notation.

Identify the range of the function shown in the graph.

Q & A

Can a function’s domain and range be the same?

Yes. For example, the domain and range of the cube root function are both the set of all real numbers.

Domain and Range of Toolkit Functions

We will now return to our set of toolkit functions to determine the domain and range of each.

Identify the range of the function shown in the graph.

For the constant function [latex]f\left(x\right)=c[/latex], the domain consists of all real numbers; there are no restrictions on the input. The only output value is the constant [latex]c[/latex], so the range is the set [latex]\left\{c\right\}[/latex] that contains this single element. In interval notation, this is written as [latex]\left[c,c\right][/latex], the interval that both begins and ends with [latex]c[/latex].

Identify the range of the function shown in the graph.

For the identity function [latex]f\left(x\right)=x[/latex], there is no restriction on [latex]x[/latex]. Both the domain and range are the set of all real numbers.

Identify the range of the function shown in the graph.

For the absolute value function [latex]f\left(x\right)=|x|[/latex], there is no restriction on [latex]x[/latex]. However, because absolute value is defined as a distance from 0, the output can only be greater than or equal to 0.

Identify the range of the function shown in the graph.

For the quadratic function [latex]f\left(x\right)={x}^{2}[/latex], the domain is all real numbers since the horizontal extent of the graph is the whole real number line. Because the graph does not include any negative values for the range, the range is only nonnegative real numbers.

Identify the range of the function shown in the graph.

For the cubic function [latex]f\left(x\right)={x}^{3}[/latex], the domain is all real numbers because the horizontal extent of the graph is the whole real number line. The same applies to the vertical extent of the graph, so the domain and range include all real numbers.

Identify the range of the function shown in the graph.

For the reciprocal function [latex]f\left(x\right)=\frac{1}{x}[/latex], we cannot divide by 0, so we must exclude 0 from the domain. Further, 1 divided by any value can never be 0, so the range also will not include 0. In set-builder notation, we could also write [latex]\left\{x|\text{ }x\ne 0\right\}[/latex], the set of all real numbers that are not zero.

Identify the range of the function shown in the graph.

For the reciprocal squared function [latex]f\left(x\right)=\frac{1}{{x}^{2}}[/latex], we cannot divide by [latex]0[/latex], so we must exclude [latex]0[/latex] from the domain. There is also no [latex]x[/latex] that can give an output of 0, so 0 is excluded from the range as well. Note that the output of this function is always positive due to the square in the denominator, so the range includes only positive numbers.

Identify the range of the function shown in the graph.

For the square root function [latex]f\left(x\right)=\sqrt[]{x}[/latex], we cannot take the square root of a negative real number, so the domain must be 0 or greater. The range also excludes negative numbers because the square root of a positive number [latex]x[/latex] is defined to be positive, even though the square of the negative number [latex]-\sqrt{x}[/latex] also gives us [latex]x[/latex].

Identify the range of the function shown in the graph.

For the cube root function [latex]f\left(x\right)=\sqrt[3]{x}[/latex], the domain and range include all real numbers. Note that there is no problem taking a cube root, or any odd-integer root, of a negative number, and the resulting output is negative (it is an odd function).

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More

How do you find the range from a graph?

Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x -axis. The range is the set of possible output values, which are shown on the y -axis.

How do you identify the range of a function?

Overall, the steps for algebraically finding the range of a function are:.
Write down y=f(x) and then solve the equation for x, giving something of the form x=g(y)..
Find the domain of g(y), and this will be the range of f(x). ... .
If you can't seem to solve for x, then try graphing the function to find the range..

What is the range shown in the graph?

When looking at a graph, the domain is all the values of the graph from left to right. The range is all the values of the graph from down to up.