3 provisions of the safe drinking water act

These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.

The Safe Drinking Water Act (SDWA) was established to protect the quality of drinking water in the U.S. This law focuses on all waters actually or potentially designed for drinking use, whether from above ground or underground sources.

  • The Act authorizes EPA to establish minimum standards to protect tap water and requires all owners or operators of public water systems to comply with these primary (health-related) standards.
  • The 1996 amendments to SDWA require that EPA consider a detailed risk and cost assessment, and best available peer-reviewed science, when developing these standards.
  • State governments, which can be approved to implement these rules for EPA, also encourage attainment of secondary standards (nuisance-related).
  • Under the Act, EPA also establishes minimum standards for state programs to protect underground sources of drinking water from endangerment by underground injection of fluids.

Compliance and Enforcement

  • Safe Drinking Water Act Compliance Monitoring: investigations and inspections
  • Water Enforcement

History of this Act

  • EPA History: Safe Drinking Water Act

More Information

The Office of Ground Water and Drinking Water (OGWDW), together with states, tribes, and many other partners, protects public health by ensuring safe drinking water and protecting ground water. OGWDW oversees implementation of the Safe Drinking Water Act.

Wastewater is water that has been used and must be treated before it is released into another body of water, so that it does not cause further pollution of water sources. Wastewater comes from a variety of sources. Everything that you flush down your toilet or rinse down the drain is wastewater. Rainwater and runoff, along with various pollutants, go down street gutters and eventually end up at a wastewater treatment facility. Wastewater can also come from agricultural and industrial sources. Some wastewaters are more difficult to treat than others; for example, industrial wastewater can be difficult to treat, whereas domestic wastewater is relatively easy to treat (though it is increasingly difficult to treat domestic waste, due to increased amounts of pharmaceuticals and personal care products that are found in domestic wastewater. For more information about emerging contaminants, see the Emerging Contaminants fact sheet or read the article from The Canadian Press called Look at everyday chemicals in water, Ontario told).

Who is Responsible for Making Sure that Wastewater is Treated Properly?

Similar to drinking water provisions, the federal government has delegated responsibility for wastewater treatment to the provinces and territories. There are two federal acts, however, that may apply to wastewater. The Fisheries Act prohibits the release of harmful substances into waters that fish live in. The Canadian Environmental Protection Act governs the release of toxic substances into the environment and allows the federal government to develop regulations for the use of toxic substances.

Most provincial and territorial governments have legislation regarding wastewater treatment standards and requirements. Operators of wastewater treatment facilities must obtain permits or licenses from the provincial or territorial government, and these permits may also require additional treatments or limits on effluent discharges. For example, in British Columbia, all municipalities are required to have a Liquid Waste Management Plan; without an approved plan, discharges are illegal. Provincial and territorial governments generally assist municipal governments with funds to build and maintain infrastructure.

Municipal governments directly oversee the wastewater treatment process, and are able to pass additional by-laws. For example, the Regional Municipality of Ottawa-Carleton has developed a program to eliminate toxic substances from the wastewater treatment system, requiring all industrial, institutional and commercial facilities to limit the amount of certain pollutants that are allowed into sewers.

How do Cities Treat Wastewater, to Make it Safe for Discharge?

There are several levels of wastewater treatment; these are primary, secondary and tertiary levels of treatment. Most municipal wastewater treatment facilities use primary and secondary levels of treatment, and some also use tertiary treatments. The type and order of treatment may vary from one treatment plant to another, but this diagram of the Ottawa-Carleton wastewater treatment plant illustrates the basic components.

3 provisions of the safe drinking water act

Typical Urban Wastewater Treatment Plant

The primary level of treatment uses screens and settling tanks to remove the majority of solids. This step is extremely important, because solids make up approximately 35 percent of the pollutants that must be removed. The screens usually have openings of about 10 millimetres, which is small enough to remove sticks, garbage and other large materials from the wastewater. This material is removed and disposed of at the landfill.

The water is then put into settling tanks (or clarifiers), where it sits for several hours, allowing the sludge to settle and a scum to form on the top. The scum is then skimmed off the top, the sludge is removed from the bottom, and the partially treated wastewater moves on to the secondary treatment level. The primary treatment generally removes up to 50 percent of the Biological Oxygen Demand (BOD; these are substances that use up the oxygen in the water), around 90 percent of suspended solids, and up to 55 percent of fecal coliforms. While primary treatment removes a significant amount of harmful substances from wastewater, it is not enough to ensure that all harmful pollutants have been removed.

Secondary treatment of wastewater uses bacteria to digest the remaining pollutants. This is accomplished by forcefully mixing the wastewater with bacteria and oxygen. The oxygen helps the bacteria to digest the pollutants faster. The water is then taken to settling tanks where the sludge again settles, leaving the water 90 to 95 percent free of pollutants. The picture below shows the settling tanks in the Winnipeg Wastewater Treatment Plant. Secondary treatment removes about 85 to 90 percent of BOD and suspended solid, and about 90 to 99 percent of coliform bacteria.

3 provisions of the safe drinking water act

Settling Tanks at the Winnipeg Wastewater Treatment Plant

Some treatment plants follow this with a sand filter, to remove additional pollutants. The water is then disinfected with chlorine, ozone, or ultraviolet light, and then discharged. For more information about any of the steps of the water treatment process, see the Chlorination fact sheet.

The sludge that is removed from the settling tanks and the scum that is skimmed off the top during the primary steps are treated separately from the water. Anaerobic bacteria (anaerobic bacteria do not require oxygen) feed off of the sludge for 10 to 20 days at temperatures around 38 degrees Celsius. This process decreases the odour and organic matter of the sludge, and creates a highly combustible gas of methane and carbon dioxide, which can be used as fuel to heat the treatment plant. Finally, the sludge is sent to a centrifuge, like the one shown in the picture below. A centrifuge is a machine that spins very quickly, forcing the liquid to separate from the solid. The liquid can then be processed with the wastewater and the solid is used as fertilizer on fields.

3 provisions of the safe drinking water act

Centrifuge at the Winnipeg Wastewater Treatment Plant

Tertiary (or advanced) treatment removes dissolved substances, such as colour, metals, organic chemicals and nutrients like phosphorus and nitrogen. There are a number of physical, chemical and biological treatment processes that are used for tertiary treatment. One of the biological treatment processes is called Biological Nutrient Removal (BNR). This diagram shows the treatment steps that Saskatoon wastewater goes through.

3 provisions of the safe drinking water act

Biological Nutrient Removal Process

In this treatment plant, wastewater first undergoes primary and secondary treatment. For the tertiary treatment, the BNR process occurs in the bioreactors. The BNR process uses bacteria in different conditions in several tanks, to digest the contaminants in the water. The three tanks have unique environments, with different amounts of oxygen. As the water has passes through the three tanks, the phosphorus is removed and the ammonia is broken down into nitrate and nitrogen gas, which other bacterial processes can not do. The BNR process can remove over 90 percent of phosphates, while traditional processes remove much less than 90 percent. The water spends approximately nine hours in the bioreactors, before entering the secondary clarifier, which is a settling tank, where the bacteria-laden sludge settles to the bottom of the tank.

How do Small Communities Treat Wastewater, to Make it Safe for Discharge?

In small communities, wastewater treatment facilities may consist of individual septic systems, simple collection systems that directly discharge effluent to surface waters, or municipal lagoons that are emptied annually. These facilities usually treat and disperse the waste as close as possible to its source, thus minimizing operational costs and maintenance requirements. The longer the waste can sit in a lagoon before being discharged, the less likely it will be to contaminate drinking water sources. Some communities store the waste in lagoons, but others release the waste directly into water sources.

Lagoons are reservoirs in the ground that store waste for a time until it is discharged, either to the soil or a water body. Shallow lagoons, that are less than 1.5 metres deep, are used for primary treatment, which allows the solid waste to settle to the bottom of the lagoon over a period of 6 to 20 days. Shallow lagoons, however, cannot effectively remove the majority of contaminants that pose problems for ground and surface waters. Deep lagoons, which are more than three metres deep, can provide long-term storage and treatment for six months to one year. Many lagoons in small communities are emptied once per year. Rural communities often make use of surrounding land to dispose of wastewater. When the soil is adequate, and there are no water sources nearby, the bacteria in the soil can remove and break down the contaminants in wastewater. Due to the availability of land in many rural areas, this can be an effective method to treat wastewater. However, there are other communities that dispose of waste in a way that threatens the quality of the lake, river or groundwater source that provides drinking water.

The Environmental Protection Agency estimates that between 10 and 20 percent of small community wastewater treatment facilities in the United States are not operating properly; state water quality agencies have identified malfunctioning wastewater treatment systems as the second greatest threat to water quality (after underground storage tanks). When the inadequate wastewater treatments are combined with ineffective drinking water treatment, the result is a serious contamination issue for a great number of rural communities.

Rural communities typically find it difficult to install and maintain wastewater treatment operations. And while many communities have inadequate methods of treating wastewater, there are some communities that are leading the way with innovative methods of treatment and water conservation measures. In several Arctic communities, including Iqaluit, Nunavut, the high cost of water has led to wastewater treatments that allow water to be reused. Wastewater is passed through a septic tank, filtered, and disinfected with ozone treatment; it is then reused for non-consumptive uses, such as toilets and laundry. These conservation measures allow them to reuse up to 55 percent of wastewater, while decreasing pressure on wastewater treatment and storage processes. For more information about water conservation, including the ways in which rural and First Nations communities are leading efforts to reduce water use, see the Water Consumption fact sheet.

How do septic systems work?

There are many people living in rural areas that are not served by wastewater treatment plants. In fact, according to Environment Canada, as of 2000, only 57 percent of Canadians were served by wastewater treatment plants, compared with 74 percent of Americans, 86.5 percent of Germans, and 99 percent of Swedes. Many people in rural areas use septic systems to safely store waste. Wastewater travels through pipes, from the house to a buried septic tank. The diagram below illustrates the basic components of a septic system.

3 provisions of the safe drinking water act

Septic System

The diagram below illustrates the tank in more detail. In the septic tank, the solids settle to the bottom and a scum forms on the top, similar to the process that occurs in settling tanks in municipal wastewater treatment plants. Once separated, the water flows out to the drainfield, and screens and compartments keep the sludge and scum inside the tank, where bacteria begin to partially digest the sludge. When the partially treated wastewater enters the drainfield, it begins to infiltrate the soil and percolate downwards. So long as the soil is appropriate, the microbes in the soil digest the pollutants, removing the bacteria, viruses and excess nutrients by the time the water reaches the groundwater source.

3 provisions of the safe drinking water act

Inside of Septic System

When the soil is not suitable, or there are nearby water sources, an alternative system may be used, so that water sources do not become contaminated. The alternative system may use sand, peat, or plastic instead of soil. Constructed wetlands, lagoons, aerators, or disinfection devices are also effective in treating the wastewater.

It is estimated that around half of all rural wells are contaminated, many from septic tanks. The United States Centers for Disease Control and Prevention suggests that wells should be at least 15 metres from septic tanks, but this distance also varies according to the type of soil.

In a recent study of groundwater sources in southeastern Michigan by the United States Geological Survey, 38 wells were tested between 1999 and 2001. Of the wells that were near sewerlines, viruses were detected in only two of the 18 wells. Of the 20 wells that were near septic systems, viruses were found in seven wells. This suggests that septic systems are a major cause of groundwater contamination. Previous studies of contaminated wells that were cited by the USGS study found coliforms in up to 80 percent of the wells, as well as some with significant numbers of the E. coli bacterium.

If you are using a septic system, it is important to maintain it properly, as failure to do so could result in the leakage of pollutants into the soil or water sources. The United States Environmental Protection Agency. 2007. Septic Technologies: Background and Technology. 

How did the Safe Drinking Water Act of 1974 assure clean water in the United States?

The Safe Drinking Water Act (SDWA) was passed by Congress in 1974, with amendments added in 1986 and 1996, to protect our drinking water. Under the SDWA, EPA sets the standards for drinking water quality and monitors states, local authorities, and water suppliers who enforce those standards.

Did Flint violate the Clean water Act?

January 2, 2015. Flint officials notify residents that their water is in violation of the Safe Drinking Water Act due to excess levels of TTHM—an issue officials reportedly learned of months before.

Which agency is responsible for maintaining the safety standards of bottled water in the United States?

The Food and Drug Administration (FDA) and the Environmental Protection Agency (EPA) are both responsible for the safety of drinking water. EPA regulates public drinking water (tap water), while FDA regulates bottled drinking water.

How do you ensure clean drinking water?

Make Your Water Safe by:.
Boiling. If water is cloudy, allow to settle, then skim the clean water above the sediment. ... .
Disinfect by using: Unscented household chlorine bleach or iodine (useful against most, but not all, harmful viruses or bacteria. ... .
Filtering..